Math 53: Multivariable Calculus

Worksheet for 2020-09-21

Problem 1. Here are some conceptual questions on the gradient and directional derivatives.

- (a) Is it possible for different level sets of a function to intersect?
- (b) How are the direction and magnitude of the gradient vector related to level sets?
- (c) If $\mathbf{r}(t)$ is a curve contained in the surface f(x, y, z) = 0, how are the vectors $\mathbf{r}'(3)$ and $\nabla f(\mathbf{r}(3))$ related? (Are they parallel? Orthogonal? Something else?)
- (d) Fix a function f(x, y), a number *c*, and a point (a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors **u** are such that $D_{\mathbf{u}}(a, b) = c$? Hint: the answer depends on |c|.

Problem 2.

(a) Let f(x, y) be a function on \mathbb{R}^2 and $\mathbf{r}(t)$ be an arc-length parametrized path in \mathbb{R}^2 (in other words, $|\mathbf{r}'(t)| = 1$ for all t).

Use the chain rule to show that

$$D_{\mathbf{r}'(t)}f(\mathbf{r}(t)) = \frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{r}(t)).$$

(b) Use the path $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ to compute $f_y(1,0)$ for $f(x,y) = \cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$.