Worksheet for 2020-09-21

Problem 1. Here are some conceptual questions on the gradient and directional derivatives.
(a) Is it possible for different level sets of a function to intersect?
(b) How are the direction and magnitude of the gradient vector related to level sets?
(c) If $\mathbf{r}(t)$ is a curve contained in the surface $f(x, y, z)=0$, how are the vectors $\mathbf{r}^{\prime}(3)$ and $\nabla f(\mathbf{r}(3))$ related? (Are they parallel? Orthogonal? Something else?)
(d) Fix a function $f(x, y)$, a number c, and a point (a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors \mathbf{u} are such that $D_{\mathbf{u}}(a, b)=c$? Hint: the answer depends on $|c|$.

Problem 2.

(a) Let $f(x, y)$ be a function on \mathbb{R}^{2} and $\mathbf{r}(t)$ be an arc-length parametrized path in \mathbb{R}^{2} (in other words, $\left|\mathbf{r}^{\prime}(t)\right|=1$ for all $t)$.

Use the chain rule to show that

$$
D_{\mathbf{r}^{\prime}(t)} f(\mathbf{r}(t))=\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))
$$

(b) Use the path $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ to compute $f_{y}(1,0)$ for $f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$.

